
Professor in the Analysis of Nonlinear Partial Differential Equations
Mathematical Institute, University of Oxford
Fellow in Applied Mathematics, The Queen’s College
Highly Cited Researcher 2015, 2016, 2017, 2018, 2019 and 2020
Link to Publications by Chronological Order
Surveys and Book Chapters
-
J. A. Carrillo, D. Matthes, M.-T. Wolfram, Lagrangian schemes for Wasserstein gradient flows, Chapter 4, Handbook of Numerical Analysis 22, 271-311, Elsevier, 2021.
- J. A. Carrillo, K. Craig, Y. Yao, Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, in N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol. II: Advances in Theory, Models, and Applications, Series: Modelling and Simulation in Science and Technology, Birkhäuser Basel, 65-108, 2019.
- R. Bailo, J. A. Carrillo, P. Degond, Pedestrian Models based on Rational Behaviour, in: Gibelli L., Bellomo N. (eds) Crowd Dynamics, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham, 259-292, 2018. Supplementary Material: Movies and Simulations.
- V. Calvez, J. A. Carrillo, F. Hoffmann, The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime, Lecture Notes in Mathematics 2186, CIME Foundation Subseries, Springer, 2018.
- J. A. Carrillo, Y.-P. Choi, S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol. I: Advances in Theory, Models, and Applications, Series: Modelling and Simulation in Science and Technology, Birkhäuser Basel, 259-298, 2017.
- J. A. Carrillo, Y.-P. Choi, M. Hauray, The derivation of Swarming models: Mean-Field Limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation Series, CISM International Centre for Mechanical Sciences, Vol. 553, 1-46, 2014.
- J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Particle, Kinetic, and Hydrodynamic Models of Swarming, in Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series: Modelling and Simulation in Science and Technology, Birkhauser, (2010), 297-336.
- J. A. Carrillo, G. Toscani, Contractive Probability Metrics and Asymptotic Behavior of Dissipative Kinetic Equations, Notes of the 2006 Porto Ercole Summer School, Rivista Matemàtica di Parma 6, 75-198, 2007.
Aggregation-Diffusion Equations and Keller-Segel models: Analysis
-
J. A. Carrillo, A. Fernández-Jiménez, D. Gómez-Castro, Partial mass concentration for fast-diffusions with non-local aggregation terms, Preprint.
- J. A. Carrillo, Y. Peng, Z. Xiang, Global existence and decay rates to self-consistent chemotaxis-fluid system, Preprint.
-
J. A. Carrillo, D. Gómez-Castro, Y. Yao, C. Zeng, Asymptotic simplification of Aggregation-Diffusion equations towards the heat kernel, to appear in Arch. Rat. Mech. Anal.
-
J. A. Carrillo, D. Gómez-Castro, J. L. Vázquez, Infinite-time concentration in Aggregation–Diffusion equations with a given potential, J. Math. Pures et Appl. 157, 346-398, 2022.
- J. A. Carrillo, M. G. Delgadino, R. L. Frank, M. Lewin, Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions, Math. Models Methods Appl. Sci. 32, 831–850, 2022.
- J. A. Carrillo, D. Gómez-Castro, J. L. Vázquez, Vortex formation for a non-local interaction model with Newtonian repulsion and superlinear mobility, Adv. Nonlinear Anal. 11, 937–967, 2022. Supplementary Material: Movies and Simulations.
- J. A. Carrillo, R. S. Gvalani, J. Wu, An invariance principle for gradient flows in the space of probability measures, J. Diff. Eqns. 345, 233-284, 2023.
- M. Bruna, M. Burger, J. A. Carrillo, Coarse graining of a Fokker-Planck equation with excluded volume effects preserving the gradient-flow structure, European J. Appl. Math. 32, 711-745, 2021.
- J. A. Carrillo, B. Düring, L. M, Kreusser, C.-B. Schönlieb, Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics, DCDS-A 41, 3985-4012, 2021.
- J. A. Carrillo, R. S. Gvalani, Phase transitions for nonlinear nonlocal aggregation-diffusion equations, Comm. Math. Phys. 382, 485-545, 2021.
- J. A. Carrillo, D. Gómez-Castro, J. L. Vázquez, A fast regularisation of a Newtonian vortex equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39, 705–747, 2022.
- V. Calvez, J. A. Carrillo, F. Hoffmann, Uniqueness of stationary states for singular Keller-Segel type models, Nonlinear Analysis TMA 205, 112222, 2021.
- J. A. Carrillo, E. A. Pimentel, V. K. Voskanyan, On a Mean Field Optimal Control Problem, Nonlinear Analysis: TMA 199, 112039, 2020.
- J. A Carrillo, J. Li, Z. Wang, Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability, Proceedings of the LMS 122, 42-68, 2021.
- J. A. Carrillo, M. G. Delgadino, G. A. Pavliotis, A λ-convexity based proof for the propagation of chaos for weakly interacting stochastic particles, J. Functional Analysis 279, 108734, 2020.
- J. A. Carrillo, X. Chen, Q. Wang, Z. Wang, L. Zhang, Phase transitions and bump solutions of the Keller-Segel model with volume exclusion, SIAM J. Applied Mathematics 80, 232-261, 2020.
- J. A. Carrillo, K. Hopf, J. L. Rodrigo, On the singularity formation and relaxation to equilibrium in 1D Fokker-Planck model with superlinear drift, Adv. Math. 360, 106883, 2020.
- J. A. Carrillo, R. S. Gvalani, G. A. Pavliotis, A. Schlichting, Long-time behaviour and phase transitions for the McKean–Vlasov equation on the torus, Arch. Rat. Mech. Anal. 235, 635-690, 2020.
- J. A. Carrillo, K. Craig, Y. Yao, Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, in N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol. II: Advances in Theory, Models, and Applications, Series: Modelling and Simulation in Science and Technology, Birkhäuser Basel, 65-108, 2019.
- J. A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao, NonlinearAggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics, Inventiones Mathematicae 218, 889-977, 2019.
- L. Alasio, M. Bruna, J. A. Carrillo, The role of a strong confining potential in a nonlinear Fokker-Planck equation, Nonlinear Analysis TMA 193, 111480, 2020.
- J. A. Carrillo, M. G. Delgadino, J. Dolbeault, R. L. Frank, F. Hoffmann, Reverse Hardy-Littlewood-Sobolev inequalities, J. Math. Pure Appl. 132, 133–165, 2019.
- J. A. Carrillo, B. Düring, L. M, Kreusser, C.-B. Schönlieb, Stability analysis of line patterns of an anisotropic interaction model, SIAM J. Dyn. Sys. 18, 1798-1845, 2019.
- J. A. Carrillo, M. Delgadino, F. S. Patacchini, Existence of ground states for aggregation-diffusion equations, Analysis and Applications 17, 393-423, 2019.
- J. A. Carrillo, J. Wang, Uniform in time Linfty-estimates for nonlinear aggregation-diffusion equations, Acta Appl. Math. 164, 1–19, 2019.
- V. Calvez, J. A. Carrillo, F. Hoffmann, The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime, Lecture Notes in Mathematics 2186, CIME Foundation Subseries, Springer, 2018.
- J. A. Carrillo, F. Santambrogio, L^∞ estimates for the JKO scheme in parabolic-elliptic Keller-Segel systems, Quarterly of Applied Mathematics 3, 515-530, 2018.
- J. A. Carrillo, F. Hoffmann, E. Mainini, B. Volzone, Ground States in the Diffusion-Dominated Regime, Calc. Var. Partial Differential Equations 57, 57-127, 2018.
- J. A. Carrillo, Y. Sugiyama, Compactly supported stationary states of the degenerate Keller-Segel system in the diffusion-dominated regime, Indiana Univ. Math. J. 67, 2279-2312, 2018.
- V. Calvez, J. A. Carrillo, F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime, Nonlinear Analysis TMA 159, 85-128, 2017.
- J. A. Carrillo, J. L. Vázquez, Some Free Boundary Problems involving Nonlocal Diffusion and Aggregation, Phil. Trans. R. Soc. A 373, 20140275, 2015.
- A. Blanchet, J. A. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot, S. Lisini, A hybrid variational principle for the Keller-Segel system in R2, M2AN 49, 1553-1576, 2015.
- J. A. Carrillo, D. Castorina, B. Volzone, Ground States for Diffusion Dominated Free Energies with Logarithmic Interaction, SIAM J. Math. Anal. 47, 1-25, 2015.
- J. A. Carrillo, S. Lisini, E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete and Continuous Dynamical Systems-A 34, 1319-1338, 2014.
- J. A. Carrillo, S. Hittmeir, A. Jüngel, Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model, Math. Mod. Meth. Appl Sci. 22, 1250041, 2012.
- J. A. Carrillo, L. Chen, J.-G. Liu, and J. Wang, A note on the subcritical two dimensional Keller-Segel System, Acta Applicandae Mathematicae 119, 43-55, 2012.
- A. Blanchet, E. A. Carlen, J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Func. Anal. 262, 2142-2230, 2012.
- V. Calvez, J. A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities, Proc. AMS. 140, 3515-3530, 2012.
- E. A. Carlen, J. A. Carrillo, M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows, Proc. Nat. Acad. USA 107 (46), 19696-19701, 2010.
- A. Blanchet, J. A. Carrillo, P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calculus of Variations and PDEs 35, 133-168, 2009.
- A. Blanchet, V. Calvez, J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak-Keller-Segel model, SIAM J. Numer. Anal. 46, 691–721, 2008.
- A. Blanchet, J. A. Carrillo, N. Masmoudi, Infinite Time Aggregation for the Critical PKS model in R2, Comm. Pure and Applied Mathematics 61, 1449-1481, 2008.
- V. Calvez, J.A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, Journal Mathématiques Pures et Appliquées 86, 155-175, 2006.
Aggregation Equations and Interaction Energies: Analysis
- J. A. Carrillo, A. Esposito, J. S.-H. Wu, Nonlocal approximation of nonlinear diffusion equations, Preprint.
- J. A. Carrillo, R. Shu, Minimizers of 3D anisotropic interaction energies, Preprint.
- J. A. Carrillo, R. Shu, Global Minimizers of a Large Class of Anisotropic Attractive-Repulsive Interaction Energies in 2D, to appear in Comm. Pure App. Math.
- J. A. Carrillo, R. Shu, From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials, Calc. Var. Partial Differential Equations 62, 28, 2023.
- J. A. Carrillo, J. Mateu, M.G. Mora, L. Rondi, L. Scardia, J. Verdera, The equilibrium measure for an anisotropic nonlocal energy, Cal. Var. PDE 60, 109, 2021.
- J. A. Carrillo, J. Mateu, M.G. Mora, L. Rondi, L. Scardia, J. Verdera, The ellipse law: Kirchhoff meets dislocations, Comm. Math. Phys. 373, 507-524, 2020.
- J. A. Carrillo, A. Figalli, F. S. Patacchini, Geometry of minimizers for the interaction energy with mildly repulsive potentials, Ann. IHP 34, 1299-1308, 2017.
- J. A. Carrillo, Y. Huang, Explicit Equilibrium Solutions For the Aggregation Equation with Power-Law Potentials, Kinetic Rel. Mod. 10, 171-192, 2017.
- J. A. Carrillo, F. James, F. Lagoutière, N. Vauchelet, The Filippov characteristic flow for the aggregation equation with mildly singular potentials, J. Differential Equations 260, 304-338, 2016.
-
J. A. Carrillo, M. G. Delgadino, A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math. Phys. 343, 747-781, 2016.
- J. A. Carrillo, D. Slepčev, L. Wu, Nonlocal-interaction equations on uniformly prox-regular sets, Discrete and Continuous Dynamical Systems-A 36, 1209-1247, 2016.
- J. A. Carrillo, M. DiFrancesco, G. Toscani, Condensation phenomena in nonlinear drift equations, Annali della Scuola Normale Superiore di Pisa XV, 145-171, 2016.
-
J. A. Cañizo, J. A. Carrillo, F. S. Patacchini, Existence of Compactly Supported Global Minimisers for the Interaction Energy, Arch. Rat. Mech. Anal. 217, 1197-1217, 2015.
- G. A. Bonaschi, J. A. Carrillo, M. DiFrancesco, M. A. Peletier, Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D, ESAIM: Control, Optimization and Calculus of Variations 21, 414–441, 2015.
- J. A. Carrillo, M. Chipot, Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies, Philosophical Transactions of the Royal Society A 372, 20130399, 2014.
-
D. Balagué, J. A. Carrillo, T. Laurent, G. Raoul, Dimensionality of Local Minimizers of the Interaction Energy, Archive for Rational Mechanics and Analysis 209, 1055–1088, 2013.
-
D. Balagué, J. A. Carrillo, Y. Yao, Confinement for Repulsive-Attractive Kernels, Discrete and Continuous Dynamical Systems-B 19, 1227–1248, 2014.
-
J. A. Carrillo, S. Lisini, E. Mainini, Gradient flows for non-smooth interaction potentials, Nonlinear Analysis TMA 100, 122–147, 2014.
- J. A. Carrillo, L. C. F. Ferreira, J. C. Precioso, A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity, Advances in Mathematics 231, 306-327, 2012.
- D. Balagué, J. A. Carrillo, T. Laurent, G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, Physica D 260, 5-25, 2013.
-
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepcev, Confinement in nonlocal interaction equations, Nonlinear Analysis TMA 75, 550-558, 2012.
- D. Balagué, J. A. Carrillo, Aggregation equation with growing at infinity attractive-repulsive potential, Proceedings of the 13th International Conference on Hyperbolic Problems, Series in Contemporary Applied Mathematics CAM 17, Higher Education Press, Volume 1, 136-147, 2012.
-
J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepcev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J. 156, 229-271, 2011.
- J. A. Carrillo, J. Rosado, Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods, Proceedings of the 5th European Congress of Mathematicians, 3–16, Eur. Math. Soc., Zurich, 2010.
- A. L. Bertozzi, J. A. Carrillo, T. Laurent, Blowup in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22, 683-710, 2009.
Aggregation-Diffusion Equations: Numerical Analysis and Scientific Computing
- T. S. Gutleb, J. A. Carrillo, A static memory sparse spectral method for time-fractional PDEs in arbitrary dimensions, Preprint.
- J. A. Carrillo, L. Wang, C. Wei, Structure preserving primal dual methods for gradient flows with nonlinear mobility transport distances, Preprint.
- R. Bailo, J. A. Carrillo, J. Hu, Bound-Preserving Finite-Volume Schemes for Systems of Continuity Equations with Saturation, to appear in SIAM J. Appl. Math.
- T. S. Gutleb, J. A. Carrillo, S. Olver, Computation of Power Law Equilibrium Measures on Balls of Arbitrary Dimension, to appear in Cons. Approx.
- T. S. Gutleb, J. A. Carrillo, S. Olver, Computing Equilibrium Measures with Power Law Kernels, to appear in Mathematics of Computation.
-
J. A. Carrillo, L. Chen, Q. Wang, An Optimal Mass Transport Method for Random Genetic Drift, SIAM J. Numer. Anal. 60, 940–969, 2022.
- J. A. Carrillo, D. Matthes, M.-T. Wolfram, Lagrangian schemes for Wasserstein gradient flows, Chapter 4, Handbook of Numerical Analysis 22, 271-311, Elsevier, 2021.
- R. Bailo, J. A. Carrillo, H. Murakawa, M. Schmidtchen, Convergence of a Fully Discrete and Energy-Dissipating Finite-Volume Scheme for Aggregation-Diffusion Equations, Math. Mod. Meth. Appl. Sci. 30, 2487-2522, 2020.
- J. A. Carrillo, K. Craig, L. Wang, C. Wei, Primal dual methods for Wasserstein gradient flows, Found. Comput. Math. 22, 389–443, 2022. Supplementary Material: Movies and Simulations.
- J.A. Carrillo, K. Hopf, M.-T. Wolfram, Numerical study of Bose-Einstein condensation in the Kaniadakis-Quarati model for bosons, Kinetic and Related Models 13, 507-529, 2020.
- R. Bailo, J. A. Carrillo, J. Hu, Fully Discrete Positivity-Preserving and Energy-Decaying Schemes for Aggregation-Diffusion Equations with a Gradient Flow Structure, Comm. Math. Sci. 18, 1259–1303, 2020.
- J. A. Carrillo, Y.-P. Choi, L. Pareschi, Structure preserving schemes for the continuum Kuramoto model: phase transitions, J. Comp. Phys. 376, 365-389, 2019.
- J. A. Carrillo, K. Craig, F. S. Patacchini, A Blob Method For Diffusion, Calc. Var. Partial Differential Equations 58, Art. 53, 2019.
- Z. Sun, J. A. Carrillo, C.-W. Shu, An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems, Kinetic Rel. Mod. 12, 885-908, 2019.
- J. A. Carrillo, U. S. Fjordholm, S. Solem, A second-order numerical method for the aggregation equations, Math. Comp. 90, 103–139, 2021.
- J. A. Carrillo, N. Kolbe, M. Lukácová-Medvidová, A hybrid mass transport finite element method for Keller–Segel type systems, J. Sci. Comp. 80, 1777-1804, 2019.
- Z. Sun, J. A. Carrillo, C.-W. Shu, A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials, J. Comp. Phys. 352, 76-104, 2018.
- J. A. Carrillo, A. Jüngel, M. C. Santos, Displacement convexity for the entropy in semidiscrete nonlinear Fokker-Planck equations, European J. Appl. Math. 1103-1122, 2019.
- J. A. Carrillo, B. Düring, D. Matthes, D. S. McCormick, A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes, J. Sci. Computing 75, 1463-1499, 2018.
- M. Campos-Pinto, J. A. Carrillo, F. Charles, Y.-P. Choi, Convergence of a Linearly Transformed Particle Method for Aggregation Equations, Numerische Mathematik 139, 743-793, 2018.
- J. Barré, J. A. Carrillo, P. Degond, D. Peurichard, E. Zatorska, Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions, J. Nonlinear Sci. 28, 235–268, 2018.
-
J. A. Carrillo, F. S. Patacchini, P. Sternberg, G. Wolansky, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Analysis 48, 3708-3741, 2016.
-
J. A. Carrillo, H. Ranetbauer, M.-T. Wolfram, Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms, J. Comp. Phys. 327, 186-202, 2016.
- J. A. Carrillo, Y. Huang, F. S. Patacchini, G. Wolansky, Numerical Study of a Particle Method for Gradient Flows, Kinetic Rel. Mod. 10, 613-641, 2017.
- J. A. Carrillo, A. Chertock, Y. Huang, A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure, Comm. in Comp. Phys. 17, 233-258, 2015.
- M. Burger, J. A. Carrillo, M.-T. Wolfram, A Mixed Finite Element Method for Nonlinear Diffusion Equations, Kinetic and Related Models 3, 59-83, 2010.
- J. A. Carrillo, J. S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM J. Sci. Comput. 31, 4305-4329, 2009.
- J.A. Carrillo, A. Jungel, S. Tang, Positive Entropic Schemes for a Nonlinear Fourth-order Parabolic Equation, Discrete and Continuous Dynamical Systems B 3, 1-20, 2003.
Aggregation-Diffusion Systems: Analysis
- J. A. Carrillo, C, Elbar, J. Skrzeczkowski, Degenerate Cahn-Hilliard systems: From nonlocal to local, Preprint.
- J. A. Carrillo, D. Gómez-Castro, Interpreting systems of continuity equations in spaces of probability measures through PDE duality, Preprint.
- J. A. Carrillo, K. Lin, Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system, Adv. Nonlinear Analysis 11, 1-39, 2022.
- M. Burger, J. A. Carrillo, J.-F. Pietschmann, M. Schmidtchen, Segregation and Gap Formation in Cross-Diffusion Models, Interfaces and Free Boundaries, 22, 175-203, 2020.
-
J. A. Carrillo, M. Di Francesco, A. Esposito, S. Fagioli, M. Schmidtchen, Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions, Discrete and Continuous Dynamical Systems-A 40, 1191-1231, 2020.
-
J. A. Carrillo, F. Filbet, M. Schmidtchen, Convergence of a Finite Volume Scheme for a System of Interacting Species with Cross-Diffusion, Numer. Math. 145, 473–511, 2020.
- J. A. Carrillo, S. Fagioli, F. Santambrogio, M. Schmidtchen, Splitting Schemes & Segregation In Reaction-(Cross-)Diffusion Systems, SIAM J. Math. Anal. 50, 5695–5718, 2018.
- J. A. Carrillo, Y. Huang, M. Schmidtchen, Zoology of a non-local cross-diffusion model for two species, SIAM J. Appl. Math. 78, 1078-1104, 2018.
Aggregation-Diffusion Systems: Applications in Cell Sorting and Adhesion
- C. Falcó, D. J. Cohen, J. A. Carrillo, R. E. Baker, Quantifying tissue growth, shape and collision via continuum models and Bayesian inference, Preprint.
- C. Falcó, R. E. Baker, J. A. Carrillo, A local continuum model of cell-cell adhesion, to appear in SIAM J. Appl. Math.
- O. Trush, C. Liu, X. Han, Y. Nakai, R. Takayama, H. Murakawa, J. A. Carrillo, H. Takechi, S. Hakeda-Suzuki, T. Suzuki, M. Sato, N-cadherin orchestrates self-organization of neurons within a columnar unit in the Drosophila medulla, J. Neuroscience 39, 5861-5880, 2019.
- J. A. Carrillo, H. Murakawa, M. Sato, H. Togashi, O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology 474, 14-24, 2019. Supplementary Material: Movies and Simulations.
- A. Gosztolai, J. A. Carrillo, M. Barahona, Collective search with finite perception: transient dynamics and search efficiency, Frontiers in Physics 6, 153-163, 2019.
- J. A. Carrillo, A. Colombi, M. Scianna, Adhesion and volume constraints via nonlocal interactions lead to cell sorting, J. Theo. Biology 445, 75-91, 2018.
Kinetic Equations in Plasmas
- J. A. Carrillo, M. G. Delgadino, J. S. H. Wu, Convergence of a particle method for a regularized spatially homogeneous Landau equation, Math. Mod. Meth. Appl. Sci.
- J. A. Carrillo, S. Jin, Y. Tang, Random batch particle methods for the homogeneous Landau equation, Commun. Comput. Phys. 31, 997-1019, 2022.
- J. A. Carrillo, M. Delgadino, J. Wu, Boltzmann to Landau from the Gradient Flow Perspective, Nonlinear Anal. 219, Paper No. 112824, 2022.
- J. A. Carrillo, M. G. Delgadino, L. Desvillettes, J. Wu, The Landau equation as a Gradient Flow, to appear in Analysis & PDE.
- J. A. Carrillo, J. Hu, L. Wang, J. Wu, A particle method for the homogeneous Landau equation, J. Comp. Phys. X 7, 100066, 2020.
- J.A. Carrillo, F. Vecil, Non oscillatory interpolation methods applied to Vlasov-based models, SIAM Journal of Scientific Computing 29, 1179-1206, 2007.
- S. Labrunie, J.A. Carrillo, P. Bertrand, Numerical study on hydrodynamic and quasi-neutral approximations for collisionless two-species plasmas, Journal of Computational Physics 200, 267-298, 2004.
PDE Models in Large Data Optimisation and Sampling
- J. A. Carrillo, N. Garcia-Trillos, S. Li, Y. Zhu, FedCBO: Reaching Group Consensus in Clustered Federated Learning through Consensus-based Optimization, Preprint.
- J. A. Carrillo, F. Hoffmann, A. M. Stuart, U. Vaes, The Ensemble Kalman Filter in the Near-Gaussian Setting, Preprint.
- J. A. Carrillo, C. Totzeck, U. Vaes, Consensus-based Optimization and Ensemble Kalman Inversion for Global Optimization Problems with Constraints, in: Modeling and Simulation for Collective Dynamics, Lecture Notes Series, Institute for Mathematical Sciences, NUS: Volume 40, 2023.
- J. A. Carrillo, F. Hoffmann, A. M. Stuart, U. Vaes, Consensus Based Sampling, Stud. Appl. Math. 148, 1069–1140, 2022. Supplementary Material: Movies and Simulations.
- J.A. Carrillo, U. Vaes, Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations, Nonlinearity 34, 2275-2295, 2021.
- J. A. Carrillo, S. Jin, L. Li, Y. Zhu, A consensus-based global optimization method for high dimensional machine learning problems, ESAIM Control Optim. Calc. Var. 27, Paper No. S5, 2021.
- J. A. Carrillo, Y.-P. Choi, C. Totzeck, O. Tse, An analytical framework for a consensus-based global optimization method, Mathematical Models and Methods in the Applied Sciences 28, 1037-1066, 2018.
Particle and PDE Models in Collective Behavior
- A. J. King, S. J. Portugal, D. Strömbom, R. P. Mann, J. A. Carrillo, D. Kalise, G. de Croon, H. Barnett, P. Scerri, R. Gross, D. Chadwick, M. Papadopolou, Biologically inspired herding of animal groups by robots, to appear in Methods in Ecology and Evolution.
- J. A. Carrillo, D. Kalise, F. Rossi, E. Trélat, Controlling swarms towards flocks and mills, SIAM J. Control and Optimization 60, 1863-1891, 2022.
-
J. A. Carrillo, Y.-P. Choi, Mean-field limits: from particle descriptions to macroscopic equations, Arch. Rat. Mech. Anal. 241, 1529-1573, 2021.
- A. Barbaro, D. Balagué, J. A. Carrillo, R. Volkin, Analysis of spherical shell solutions for the radially symmetric Aggregation Equation, SIAM J. Appl. Dyn. Sys. 9, 2628-2657, 2020.
- J. A. Carrillo, M. Zanella, Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties, Vietnam Journal of Mathematics 47, 931-954, 2019.
- J. A. Carrillo, L. Pareschi, M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty, Comm. in Comp. Phys. 25, 508-531, 2019.
- J. A. Carrillo, Y.-P. Choi, M. Hauray, S. Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, J. European Math. Soc. 21, 121-161, 2019.
- R. Bailo, J. A. Carrillo, P. Degond, Pedestrian Models based on Rational Behaviour, in: Gibelli L., Bellomo N. (eds) Crowd Dynamics, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham, 259-292, 2018. Supplementary Material: Movies and Simulations.
- R. Bailo, M. Bongini, J. A. Carrillo, D. Kalise, Optimal consensus control of the Cucker-Smale model, IFAC-PapersOnLine 51, 1-6, 2018.
- J. A. Carrillo, Y.-P. Choi, P. B. Mucha, J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Analysis Series B: Real World Applications 37, 317-328, 2017.
- A. B. T. Barbaro, J. A. Cañizo, J. A. Carrillo, P. Degond, Phase Transitions in a kinetic flocking model of Cucker-Smale type, Multiscale Model. Simul. 14, 1063-1088, 2016.
- J. A. Carrillo, A. Klar, A. Roth, Single to Double Mill Small Noise Transition via Semi-Lagrangian Finite Volume Methods, Comm. Math. Sci. 14, 1111-1136, 2016.
- J. A. Carrillo, R. Eftimie, F. K. O. Hoffmann, Non-local kinetic and macroscopic models for self-organised animal aggregations, Kinetic and Related Models 8, 413-441, 2015.
- J. A. Carrillo, Y.-P. Choi, M. Hauray, Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESAIM: Proceedings and Surveys 47, 17-35, 2014.
- J. A. Carrillo, Y.-P. Choi, M. Hauray, The derivation of Swarming models: Mean-Field Limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation Series, CISM International Centre for Mechanical Sciences, Vol. 553, 1-46, 2014.
- J. A. Carrillo, Y. Huang, S. Martin, Nonlinear stability of flock solutions in second-order swarming models, Nonlinear Analysis: Real World Applications 17, 332–343, 2014.
- J. A. Carrillo, Y. Huang, S. Martin, Explicit Flock Solutions for Quasi-Morse potentials, European Journal of Applied Mathematics 25, 553–578, 2014.
- G. Albi, D. Balagué, J. A. Carrillo, J. von Brecht, Stability Analysis of Flock and Mill rings for 2nd Order Models in Swarming, SIAM J. Appl. Math. 74, 794–818, 2014.
- T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions, Phys. D 260, 1-4, 2013.
- J. A. Carrillo, S. Martin, V. Panferov, A new interaction potential for swarming models, Physica D 260, 112-126, 2013.
- M. Bostan, J. A. Carrillo, Asymptotic Fixed-Speed Reduced Dynamics for Kinetic Equations in Swarming, Math. Mod. Meth. in the Appl. Sci. 23, 2353, 2013.
- F. Bolley, J. A. Cañizo, J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Letters 25, 339-343, 2012.
- F. Bolley, J. A. Cañizo, J. A. Carrillo, Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming, Math. Mod. Meth. Appl. Sci. 21, 2179-2210, 2011.
- J. A. Carrillo, A. Klar, S. Martin, S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Mod. Meth. Appl. Sci. 20, 1533-1552, 2010.
- J. A. Cañizo, J. A. Carrillo, J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci. 21, 515-539, 2011.
- J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal. 42, 218-236, 2010.
- J. A. Cañizo, J. A. Carrillo, J. Rosado, Collective Behavior of Animals: Swarming and Complex Patterns, Arbor 186, 1035-1049, 2010.
- J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Particle, Kinetic, and Hydrodynamic Models of Swarming, in Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Series: Modelling and Simulation in Science and Technology, Birkhauser, (2010), 297-336.
- J. A. Carrillo, M. R. D’Orsogna, V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models 2, 363-378, 2009.
Fluid Models in Collective Behavior: Analysis, Numerics and modelling
- J. A. Carrillo, R. Shu, Existence of radial global smooth solutions to the pressureless Euler-Poisson equations with quadratic confinement, Preprint.
- J. A. Carrillo, Tomasz Dębiec, Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Dissipative measure-valued solutions to the Euler-Poisson equation, Preprint.
- F. Magaletti, M. Gallo, S. P. Perez, J. A. Carrillo, S. Kalliadasis, A positivity-preserving scheme for fluctuating hydrodynamics, Journal of Computational Physics 463, 111248, 2022.
- J. A. Carrillo, Y.-P. Choi, J. Jung, Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces, Math. Mod. Meth. Appl. Sci.
- J. A. Carrillo, M. J. Castro, S. Kalliadasis, S. P. Perez, High-order well-balanced finite volume schemes for hydrodynamic equations with nonlocal free energy, SIAM J. Sci. Computing 43, A828–A858, 2021.
- M. Bostan, J. A. Carrillo, Fluid models with phase transition for kinetic equations in swarming, Math. Models and Meth. in the Appl. Sci. 30, 2023–2065, 2020.
- J. A. Carrillo, Y. Peng, A. Wróblewska-Kaminska, Relative Entropy Method for the relaxation limit of Hydrodynamic models, Networks and Heterogeneous Media 15, 369-387, 2020.
- A. Russo, S. P. Perez, M. A. Duran-Olivencia, P. Yatsyshin, J. A. Carrillo, S. Kalliadasis, A Finite-Volume Method for Fluctuating Dynamical Density Functional Theory, J. Comp. Phys. 428, 109796, 2021.
- J. A. Carrillo, A. Wróblewska-Kaminska, E. Zatorska, Pressureless Euler with nonlocal interactions as a singular limit of degenerate Navier-Stokes system, J. Math. Anal. Appl. 492, 124400, 2020.
- J. A. Carrillo, S. Kalliadasis, S. P. Perez, C.-W. Shu, Well-balanced finite volume schemes for hydrodynamic equations with general free energy,
Multiscale Modelling and Simulations 18, 502–541, 2020. Supplementary Material: Movies and Simulations. - J. A. Carrillo, Y.-P. Choi, Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces, Ann. IHP 37, 925–954, 2020.
- P. Aceves-Sánchez, M. Bostan, J. A. Carrillo, P. Degond, Hydrodynamic limits for kinetic flocking models of Cucker-Smale type, Math. Bio. Eng. 16, 7883-7910, 2019.
- J. A. Carrillo, Y.-P. Choi, O. Tse, Convergence to Equilibrium in Wasserstein distance for damped Euler equations with interaction forces, Comm. Math. Phys. 365, 329-361, 2019.
- J. A. Carrillo, A. Wróblewska-Kaminska, E. Zatorska, On long-time asymptotics for viscous hydrodynamic models of collective behavior with damping and nonlocal interactions, Mathematical Models and Methods in the Applied Sciences 29, 31-63, 2019.
- J. A. Carrillo, Y.-P. Choi, S. Pérez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in N. Bellomo, P. Degond, and E. Tadmor (Eds.), Active Particles Vol. I: Advances in Theory, Models, and Applications, Series: Modelling and Simulation in Science and Technology, Birkhäuser Basel, 259-298, 2017.
- M. Bostan, J. A. Carrillo, Reduced fluid models for self-propelled particles interacting through alignment, Mathematical Models and Methods in the Applied Sciences 27, 1255-1299, 2017.
- J. A. Carrillo, Y.-P. Choi, E. Zatorska, On the pressureless damped Euler-Poisson equations with non-local forces: Critical thresholds and large-time behavior, Mathematical Models and Methods in the Applied Sciences 26, 2311-2340, 2016.
- J. A. Carrillo, E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda,Weak solutions for Euler systems with non-local interactions, J. Lond. Math. Soc. 95, 705-724, 2017.
- J. A. Carrillo, Y.-P. Choi, E. Tadmor, C. Tan, Critical thresholds in 1D Euler equations with nonlocal forces, Mathematical Models and Methods in the Applied Sciences 26, 185-206, 2016.
PDE Models in Population Dynamics
-
S. Abo, J. A. Carrillo, A. T. Layton, Can the clocks tick together despite the noise? Stochastic simulations and analysis, to appear in SIAM J. Appl Dyn. Systems.
- F. Alvarez, J. A. Carrillo, J. Clairambault, Evolution of a structured cell population endowed with plasticity of traits under constraints on and between the traits, J. Math. Biology 85, Article n. 42, 2022.
- J. A. Carrillo, P. Gwiazda, K, Kropielnicka, A. Marciniak-Czochra, The Escalator Boxcar Train Method for a System of Aged-structured Equations in the Space of Measures, SIAM J. Numer. Anal. 57, 1842-1874, 2019.
- J. A. Cañizo, J. A. Carrillo, M. Pájaro, Exponential equilibration of genetic circuits using entropy methods, J. Math. Biology 78, 373–411, 2019.
- M. Pájaro, A. A. Alonso, J. A. Carrillo, C. Vázquez, Stability of stochastic gene regulatory networks using entropy methods, 2th IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems Theory TFMST 2016 — Vigo, Spain, 28—30 September 2016, IFAC-PapersOnLine 49, 1–5, 2016.
- J. A. Carrillo, S. Martin, M.-T. Wolfram, A local version of the Hughes model for pedestrian flow, Mathematical Models and Methods in the Applied Sciences 26, 671–697, 2016.
- J. A. Carrillo, P. Gwiazda, A. Ulikowska, Splitting-Particle Methods for Structured Population Models: Convergence and Applications, Mathematical Models and Methods in the Applied Sciences 24, 2171, 2014.
- J. A. Cañizo, J. A. Carrillo, S. Cuadrado, Measure solutions for some models in population dynamics, Acta Applicandae Mathematicae 123, 141-156, 2013.
- J. A. Carrillo, R. M. Colombo, P. Gwiazda, A. Ulikowska, Structured populations, cell growth and measure valued balance laws, J. Diff. Eqns. 252, 3245-3277, 2012.
- J.A. Carrillo, S. Cuadrado, B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Mathematical Biosciences 205, 137-161, 2007.
PDE Models in Computational Neuroscience
-
J. A. Carrillo, P. Roux, S. Solem, Noise-driven bifurcations in a nonlinear Fokker-Planck system describing stochastic neural fields, Physica D: Nonlinear Phenomena 449, 133736, 2023.
- J. A. Carrillo, X. Dou, Z. Zhou, A simplified voltage-conductance kinetic model for interacting neurons and its asymptotic limit, Preprint.
- J. A. Carrillo, A. Clini, S. Solem, The mean field limit of stochastic differential equation systems modelling grid cells, to appear in SIAM J. Math. Anal.
- J. A. Carrillo, H. Holden, S. Solem, Noise-driven bifurcations in a neural field system modelling networks of grid cells, J. Math. Biology 85, Article n. 42, 2022.
- J. A. Carrillo, B. Perthame, D. Salort, D. Smets, Qualitative Properties of Solutions for the Noisy Integrate & Fire model in Computational Neuroscience, Nonlinearity 28, 3365-3388, 2015.
- J. A. Carrillo, S. Mancini, M. B. Tran, On the exponential convergence rate for a non-gradient Fokker-Planck equation in Computational Neuroscience, JEPE 1, 271-279, 2015.
- J. A. Carrillo, S. Cordier, G. Deco, S. Mancini, Complexity Reduction of Rate-Equations Models for Two-Choice Decision-Making, PLoS ONE 8(12), e80820, 2013.
- J. A. Carrillo, S. Cordier, S. Mancini, One dimensional Fokker-Planck reduced dynamics of decision making models in Computational Neuroscience, Communications in Mathematical Sciences 11, 523–540, 2013.
- J. A. Carrillo, M. d. M. González, M. P. Gualdani, and M. E. Schonbek, Classical Solutions for a nonlinear Fokker-Planck equation arising in Computational Neuroscience, Comm. in PDEs 38, 385-409, 2013.
- M. J. Cáceres, J. A. Carrillo, B. Perthame, Analysis of Nonlinear Noisy Integrate & Fire Neuron Models: blow-up and steady states, Journal of Mathematical Neuroscience 1, 7, 2011.
- J. A. Carrillo, M. J. Cáceres, L. Tao, A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics, J. Comp. Phys. 230, 1084-1099, 2011.
- J. A. Carrillo, S. Cordier, S. Mancini, A decision-making Fokker-Planck model in Computational Neuroscience, J. Math. Biology 63, 801-830, 2011.
Nonlinear Diffusions: Entropy/Entropy Dissipation
- J. A. Cañizo, J. A. Carrillo, P. Laurençot, J. Rosado, The Fokker-Planck equation for bosons in 2D: well-posedness and asymptotic behavior, Nonlinear Analysis: TMA 137, 291-305, 2016.
- J. A. Carrillo, Y. Huang, M. C. Santos, J. L. Vázquez, Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure, J. Differential Equations 258, 736–763, 2015.
- J. A. Carrillo, G. Toscani, Renyi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations, Nonlinearity 27, 3159–3177, 2014.
- F. Bolley, J. A. Carrillo, Nonlinear diffusion: Geodesic Convexity is equivalent to Wasserstein Contraction, Comm. PDEs 39, 1860–1869, 2014.
- J.A. Carrillo, V. Caselles, S. Moll, On the relativistic heat equation in one space dimension, Proc. London Math. Soc. 107, 1395-1423, 2013.
- J. A. Cañizo, J. A. Carrillo, M. E. Schonbek, Decay rates for a class of diffusive-dominated interaction equations, J. Math. Anal. Appl. 389, 541-557, 2012.
- J. A. Carrillo, S. Lisini, On the asymptotic behavior of the gradient flow of a polyconvex functional, Contemporary Mathematics series 526, 37-51, 2010.
- M. Agueh, A. Blanchet, J. A. Carrillo, Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, J. Evol. Equations 10, 59-84, 2010.
- J. A. Carrillo, S. Lisini, G. Savare, D. Slepcev, Nonlinear mobility continuity equations and generalized displacement convexity, J. Functional Anal. 258, 1273-1309, 2010.
- J. A. Carrillo, D. Slepcev, Example of a displacement convex functional of first order, Calculus of Variations and PDES 36, 547-564, 2009.
- J. A. Carrillo, P. Laurençot, J. Rosado, Fermi-Dirac-Fokker-Planck Equation: Well-posedness & Long-time Asymptotics, J. Differential Equations 247, 2209-2234, 2009.
- J. A. Carrillo, M. P. Gualdani, A. Jüngel, Convergence of an entropic semi-discretization for nonlinear Fokker-Planck equations in Rd, Pub. Mat. 52, 413-433, 2008.
- A. Arnold, J. A. Carrillo, C. Klapproth, Improved entropy decay estimates for the heat equation, J. Mathematical Analysis and Applications 343, 190-206, 2008.
- J.A. Carrillo, J. L. Vázquez, Asymptotic Complexity in Filtration Equations, Journal of Evolution Equations 7, 471-495, 2007.
- J.A. Carrillo, J. Rosado, F. Salvarani, 1D Nonlinear Fokker-Planck equations for Fermions and Bosons, Applied Mathematics Letters 21, 148-154, 2008.
- J.A. Carrillo, J. Dolbeault, I. Gentil, A. Jüngel, Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations, Discrete Cont. Dynamical Systems B 6, 1027-1050, 2006.
- J.A. Carrillo, M. DiFrancesco, G. Toscani, Strict Contractivity of the 2-Wasserstein distance for the porous medium equation by mass-centering, Proc. Amer. Math. Soc. 135, 353-363, 2007.
- J.A. Carrillo, M. DiFrancesco, M. P. Gualdani, Semidiscretization and long-time asymptotics of nonlinear diffusion equations, Comm. Math. Sci. 1, Supplemental issue, 21-53, 2007.
- J.A. Carrillo, M. DiFrancesco, G. Toscani, Intermediate asymptotics beyond homogeneity and self-similarity: long time behavior for u_t=\Delta \phi(u), Archive for Rational Mechanics and Analysis 180, 127-149, 2006.
- J.A. Carrillo, G. Toscani, Wasserstein metric and large–time asymptotics of nonlinear diffusion equations, New Trends in Mathematical Physics, (In Honour of the Salvatore Rionero 70th Birthday), 234-244, 2005.
- J.A. Carrillo, EDPs de difusión y transporte óptimo de masa, Bol. Soc. Mat. Apl. 28, 129-154, 2004.
- J.A. Carrillo, K. Fellner, Long-time Asymptotics via Entropy Methods for Diffusion Dominated Equations, Asymptotic Analysis 42, 29-54, 2005.
- J.A. Carrillo, M. P. Gualdani, G. Toscani, Finite speed of propagation in porous media by mass transportation methods, C. R. Acad. Sci. Paris Ser. I 338, 815-818, 2004.
- J. A. Carrillo, C. Lederman, P.A. Markowich, G. Toscani, Poincaré Inequalities for Linearization of Very Fast Diffusion Equations, Nonlinearity 15, 565-580, 2002.
- J. A. Carrillo, G. Toscani, Intermediate asymptotics for strong solutions of the thin film equation, Comm. Math. Phys. 225, 551-571, 2002.
- J. A. Carrillo, A. Jungel, P.A. Markowich, G. Toscani, A.Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatshefte fur Mathematik, 133, 1-82, 2001.
- J. A. Carrillo, P.A. Markowich, A.Unterreiter, Large-Time Asymptotics of Porous-Medium Type Equations, Gakuto International Series Mathematical Sciences and Applications 13, 24-36, 2000.
- J. A. Carrillo, G. Toscani, Asymptotic L^1-decay of solutions of the porous medium equation to self-similarity, Indiana University Mathematics Journal, 49, 113-141, 2000.
- J. A. Carrillo, G. Toscani, Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations, Math. Meth. Appl. Sci., 21, 1269-1286, 1998.
Kinetic Equations: Granular Media
- J. A. Carrillo, J. Hu, Z. Ma, T. Rey, Recent development in kinetic theory of granular materials: analysis and numerical methods, in: Albi G., Merino-Aceituno S., Nota A., Zanella M. (eds) Trails in Kinetic Theory. SEMA SIMAI Springer Series, vol 25. Springer, Cham., 2021.
- L. Almazán, J. A. Carrillo, C. Salueña, V. Garzó, T. Pöschel, Role of kinetic transport coefficients for hydrodynamic simulations of granular flow, New J. Phys. 15, 043044, 2013.
- L. Almazán, C. Salueña, V. Garzó, J. A. Carrillo, T. Pöschel, Hydrodynamics at the Navier-Stokes level applied to fast, transient, supersonic granular flows, AIP Conf. Proc. 1501, 993-1000, 2012.
- M. Bisi, J. A. Carrillo, B. Lods, Equilibrium solution to the inelastic Boltzmann equation driven by a particles thermal bath, J. Stat. Phys. 133, 841- 870, 2008.
- E. A. Carlen, J. A. Carrillo, M. C. Carvalho, Strong convergence towards homogeneous cooling states for dissipative Maxwell models, Annales de l’IHP-ANL 26, 1675-1700, 2009.
- J.A. Carrillo, S. Cordier, G. Toscani, Over-populated Tails for conservative-in-the-mean Inelastic Maxwell Models, Discrete and Continuous Dynamical Systems A 24, 59–81, 2009.
- J. A. Carrillo, G. Toscani, Contractive Probability Metrics and Asymptotic Behavior of Dissipative Kinetic Equations, Notes of the 2006 Porto Ercole Summer School, Rivista Matemàtica di Parma 6, 75-198, 2007.
- J. A. Carrillo, T. Pöschel, C. Salueña, Granular Hydrodynamics and Pattern Formation in Vertically Oscillated Granular Disks Layers, J. Fluid Mechanics 597, 119-144, 2008.
- F. Bolley, J.A. Carrillo, Tanaka Theorem for Inelastic Maxwell Models, Comm. Math. Phys. 276, 287-314, 2007.
- M. Bisi, J.A. Carrillo, G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model, J. Stat. Phys. 124, 625-653, 2006.
- J. A. Carrillo, C. Salueña, Modelling of Shock Waves and Clustering in Hydrodynamic Simulations of Granular Gases, Modelling and Numerics of Kinetic Dissipative Systems, 175-189, Nova Science Publishers NY, 2006.
- C. Salueña, J. A. Carrillo, Numerical simulation of hydrodynamic equations for granular media, Powders & Grains 2005: Garcia-Rojo, Hermann and McNamara eds. pp 481-484. A.A. Balkema, London (2005)
- M. Bisi, J.A. Carrillo, G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Stat. Phys. 118, 301-331, 2005.
- J.A. Carrillo, R.J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Archive for Rational Mechanics and Analysis 179, 217-263, 2006.
- J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Revista Matemática Iberoamericana 19, 1-48, 2003.
- J. A. Carrillo, C. Cercignani, I. Gamba, Steady states of a Boltzmann equation for driven granular media, Phys. Rev. E., 62, 7700-7707, 2000.
- A. V. Bobylev, J. A. Carrillo, I. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98, 743-773, 2000.
- J. A. Carrillo, On a 1-D granular media immersed in a fluid, Fields Institute Communications, 27, 43-56, 2000.
- D. Benedetto, E. Caglioti, J. A. Carrillo, M. Pulvirenti, A non-maxwellian steady distribution for one-dimensional granular media, J. Stat. Phys., 91, 979-990, 1998.
Kinetic Equations: VPFP and related models
- J. A. Carrillo, Y.-P. Choi, Y. Peng, Large friction-high force fields limit for the nonlinear Vlasov-Poisson-Fokker-Planck system, Kinetic and Related Models 15, 355-384, 2022.
- J. A. Carrillo, L. Wang, W. Xu, M. Yan, Variational Asymptotic Preserving Scheme for the Vlasov-Poisson-Fokker-Planck System, Multiscale Model. Simul. 19, 478–505, 2021.
- J. A. Carrillo, Y.-P. Choi, S. Salem, Propagation of chaos for the VPFP equation with a polynomial cut-off, Commun. Contemp. Math. 21, 1850039, 2019.
- J. A. Carrillo, Y.-P. Choi, T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. IHP 33, 273-307, 2016.
- J. A. Carrillo, Y.-P. Choi, S.-Y. Ha, M.-J. Kang, Y. Kim, Contractivity of the Wasserstein metric for the kinetic Kuramoto equation, J. Stat. Phys. 156, 395–415, 2014.
- J. A. Carrillo, T. Karper, K. Trivisa, On the dynamics of a fluid-particle interaction model: The Bubbling Regime, Nonlinear Analysis TMA 74, 2778-2801, 2011.
- J. A. Carrillo, R. Duan, A. Moussa, Global Classical Solutions Close to Equilibrium to the Vlasov-Euler-Fokker-Planck System, Kinetic and Related Models 4, 227-258, 2011.
- M. Bisi, J. A. Carrillo, G. Spiga, Some alternative methods for hydrodynamic closures to dissipative kinetic models, Eur. Phys. J. Special Topics 179, 165-178, 2009.
- A. Arnold, J. A. Carrillo, C. Manzini, Refined long-time asymptotics for some polymeric fluid flow models, Comm. Math. Sci. 8, 763-782, 2010.
- J. A. Carrillo, L. Desvillettes, K. Fellner, Rigorous derivation of a nonlinear diffusion equation as fast-reaction limit of a continuous coagulation-fragmentation model with diffusion, Comm. in PDEs 34, 1338-1351, 2009.
- J.A. Carrillo, L. Desvillettes, K. Fellner, Fast-Reaction Limit for the Inhomogeneous Aizenman-Bak Model, Kinetic and Related Models 1, 127-137, 2008.
- J.A. Carrillo, L. Desvillettes, K. Fellner, Exponential Decay Towards Equilibrium for the Inhomogeneous Aizenman-Bak Model, Comm. Math. Phys. 278, 433-451, 2008.
- J.A. Carrillo, T. Goudon, Stability and Asymptotic Analysis of a Fluid-Particle Interaction Model, Comm. PDE 31, 1349 – 1379, 2006.
- J.A. Carrillo, S. Labrunie, Global solutions for the one-dimensional Vlasov-Maxwell system for Laser-plasma interaction, Math. Mod. Meth. Appl. Sci. 16, 19-57, 2006.
- A. Jungel, A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, C. Villani, G. Toscani, C. Lederman, P.A. Markowich, Entropies and equilibria of many-particle systems: An essay on recent research, Monat. Mathematik. 142, 35-43, 2004.
- A. Arnold, J. A. Carrillo, E. Dhamo, On the periodic Wigner-Poisson-Fokker-Planck system, Journal of Mathematical Analysis and Applications 275, 263-276, 2002.
- A. Arnold, J. A. Carrillo, M. Tidriri, Large-time behavior of discrete kinetic equations with non-symmetric interactions, Mathematical Models and Methods in the Applied Sciences 12, 1555-1564, 2002.
- M.J. Cáceres, J.A. Carrillo, T. Goudon, Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles, Comm. in PDE. 28, 969-989, 2003.
- M.J. Caceres, J.A. Carrillo, J. Dolbeault, Nonlinear stability in Lp for solutions of the Vlasov-Poisson system for charged particles, SIAM J. Math. Anal. 34, 478-494, 2002.
- A. Arnold, J. A. Carrillo, I. Gamba, C. Shu, Low and High Field Scaling Limits for the Vlasov- and Wigner-Poisson-Fokker-Planck Systems, Transp. Theory Stat. Phys., 30, 121-153, 2001.
- J.A. Carrillo, Global weak solutions for the initial-boundary value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Meth. Appl. Sci., 21, 907-938, 1998.
- J.A. Carrillo, J. Soler, On functional solutions for the three dimensional kinetic equations of Vlasov-type with bounded measures as initial data, Nonlinear Analysis 32, 235-259, 1998.
- J.A. Carrillo, J. Soler, Functional solutions for the Vlasov-Poisson system, Appl. Math. Lett. 10, 45-50, 1997.
- J.A. Carrillo, J. Soler, On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data, J. Math. Anal. Appl. 207, 475-495, 1997.
- L.L. Bonilla, J.A. Carrillo, J. Soler, Asymptotic behaviour of the initial boundary value problem for the three-dimensional Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math. 57, 1343-1372, 1997.
- L.L. Bonilla, J.A. Carrillo, J. Soler, An H-theorem for electrostatic and self-gravitating Vlasov-Poisson- Fokker-Planck systems, Physics Letters A 212, 55-59, 1996.
- J.A. Carrillo, J. Soler, J.L. Vázquez, Asymptotic behaviour and selfsimilarity for the three dimensional Vlasov-Poisson-Fokker-Planck system, J. Functional Analysis 141, 99-132, 1996.
- J.A. Carrillo, J. Soler, On the initial value problem for the Vlasov-Poisson- Fokker-Planck system with initial data in Lp-spaces, Math. Meth. Appl. Sci. 18, 825-839, 1995.
- J.A. Carrillo, J. Soler, J.L. Vázquez, Asymptotic behaviour for the frictionless Vlasov-Poisson-Fokker-Planck system, C.R. Acad. Sci. Paris 321, 1195-1200, 1995.
- L.L. Bonilla, J.A. Carrillo, J. Soler, Asymptotic behavior of the Vlasov-Poisson-Fokker-Planck system in bounded domains, Z. Angew. Math. Mech. 76, 485-486, 1996.
- J.A. Carrillo, J. Soler, Global existence of functional solutions for the Vlasov-Poisson- Fokker-Planck system in 3-D with bounded measures as initial data, Pitman Research Notes in Mathematics, 326, 1994.
Kinetic Equations: Semiconductors
- N. Ben Abdallah, M. J. Cáceres, J. A. Carrillo, F. Vecil, A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs, J. Comp. Phys. 228, 6553-6571, 2009.
- J.A. Carrillo, A. Majorana, F. Vecil, A Semi-lagrangian deterministic solver for the semiconductor Boltzmann-Poisson system, Commun. Comput. Phys. 2, 1027-1054, 2007.
- M.J. Cáceres, J. A. Carrillo, I. Gamba, A. Majorana, C. W. Shu, DSMC versus WENO-BTE: A double gate MOSFET example, Journal of Computational Electronics 5, 471-474, 2006.
- M.J. Cáceres, J. A. Carrillo, I. Gamba, A. Majorana, C. W. Shu, Deterministic kinetic solvers for charged particle transport in semiconductor devices, in Cercignani, C., Gabetta, E. (eds.) Transport Phenomena and Kinetic Theory: Applications to Gases, Semiconductors, Photons and Biological Systems, Series: Modelling and Simulation in Science and Technology, Birkhäuser, 151-171.
- M.J. Cáceres, J.A. Carrillo, A. Majorana, Deterministic simulation of the Boltzmann-Poisson system in GaAs-based semiconductors, SIAM Journal of Scientific Computing 27, 1981-2009, 2006.
- J. M. Mantas, J. A. Carrillo, A. Majorana, Parallelization of WENO-Boltzmann schemes for kinetic descriptions of 2D semiconductor devices, in Anile, A.M., Ali, G.; Mascali, G. (eds.) Scientific Computing in Electrical Engineering, Series: Mathematics in Industry Subseries: The European Consortium for Mathematics in Industry , Vol. 9 Springer, Berlin, (2006), 357-362.
- P. González, J. A. Carrillo, F. Gámiz, Deterministic Numerical Simulation of 1d kinetic descriptions of Bipolar Electron Devices, in Anile, A.M., Ali, G.; Mascali, G. (eds.) Scientific Computing in Electrical Engineering, Series: Mathematics in Industry Subseries: The European Consortium for Mathematics in Industry , Vol. 9 Springer, Berlin, (2006), 339-344.
- J. A. Carrillo, I. Gamba, A. Majorana, C. W. Shu, 2D semiconductor device simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and comparison to Monte Carlo methods, Journal of Computational Physics 214, 55-80, 2006.
- P. González, A. Godoy, F. Gámiz, J. A. Carrillo, Accurate Deterministic Numerical Simulation of p-n Junctions, Journal of Computational Electronics 3, 235-238, 2004.
- J. A. Carrillo, I. M. Gamba, A. Majorana, C.W. Shu, A direct solver for 2D non-stationary Boltzmann-Poisson Systems for Semiconductor Devices: A MESFET simulation by WENO-Boltzmann schemes, Journal of Computational Electronics 2, 375-380, 2003.
- J. A. Carrillo, I. M. Gamba, A. Majorana, C.W. Shu, A WENO-solver for the 1D non-stationary Boltzmann-Poisson system for semiconductor devices, Journal of Computational Electronics 1, 365-370, 2002.
- J. A. Carrillo, I. M. Gamba, O. Muscato, C.W.Shu, Comparison of Monte Carlo and deterministic simulations of a silicon diode, IMA Volume Series 135, 75-84, 2003.
- A. M. Anile, J.A. Carrillo, I. M. Gamba, C.W. Shu, Approximation of the BTE by a relaxation-time operator: simulations for a 50nm-channel Si diode, VLSI design Journal 13, 349-354, 2001.
- J. A. Carrillo, I. Gamba, C. W. Shu, Computational macroscopic approximations to the 1-D relaxation-time kinetic system for semiconductors, Physica D, 146, 289-306, 2000.
Kinetic Equations: Numerical Analysis, Scientific Computing and Modelling
- R. Bailo, J. A. Carrillo, S. Kalliadasis, S. P. Perez, Unconditional bound-preserving and energy-dissipating finite-volume schemes for the Cahn-Hilliard equation, Preprint.
- J. A. Carrillo, M. Parisot, Z. Szymańska, Mathematical Modelling of Collagen Fibers Rearrangement During Tendon Healing Process, Kinetic and Related Models 14, 283-301, 2021.
- N. Kruk, J. A. Carrillo, H. Koeppel, A Finite Volume Method for Continuum Limit Equations of Nonlocally Interacting Active Chiral Particles, J. Comp. Phys. 440, 110275, 2021. Supplementary Material: Movies and Simulations.
- J. A. Carrillo, S. Kalliadasis, F. Liang, S. P. Perez, Enhancement of damaged-image prediction through Cahn-Hilliard Image Inpainting, R. Soc. Open Sci. 8, 201294, 2021.
- N. Kruk, J. A. Carrillo, H. Koeppel, Traveling Bands, Clouds, and Vortices of Chiral Active Matter, Physical Review E 102, 022604, 2020. Supplementary Material: Movies and Simulations.
- V. Bonnaillie-Noël, J.A. Carrillo, T. Goudon, G. Pavliotis, Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations, IMA Journal of Numerical Analysis 36,1536-1569, 2016.
- J. A. Carrillo, B. Yan, An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis, Multiscale Model. Simul. 11, 336–361, 2013.
- B. Ayuso de Dios, J. A. Carrillo, C.-W. Shu, Discontinuous Galerkin methods for the multi-dimensional Vlasov-Poisson problem, Math. Mod. Meth. Appl Sci. 22, 1250042, 2012.
- B. Ayuso, J. A. Carrillo, C.-W. Shu, Discontinuous Galerkin Methods for the one-dimensional Vlasov-Poisson System, Kinetic and Related Models 4, 955 – 989, 2011.
- J.A. Carrillo, T. Goudon, P. Lafitte, Simulation of Fluid & Particles Flows: Asymptotic Preserving Schemes for Bubbling and Flowing Regimes, J. Comp. Phys. 227, 7929-7951, 2008.
- Y. Hyon, J. A. Carrillo, Q. Du, C. Liu, A Macroscopic Closure Approximation to the Micro-Macro FENE Models with Maximum Entropy Principle for Polymeric Materials, Kinetic and Related Models 1, 171-184, 2008.
- J.A. Carrillo, T. Goudon, P. Lafitte, F. Vecil, Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations, J. Sci. Comp. 35, 113-149, 2008.
- J. M. Mantas, P. González, J. A. Carrillo, Parallelization of Implicit-Explicit Runge-Kutta Methods for Cluster of PCs, Proceedings of the Euro-Par 2005 Parallel Processing: 11th International Euro-Par Conference, Editors: José C. Cunha, Pedro D. Medeiros, pp 815-825, Lecture Notes in Computer Science 3648, Springer-Verlag 2005.
- J. M. Mantas-Ruiz, L. Pareschi, J. A. Carrillo, J. Ortega-Lopera, Parallel Integration of Hydrodynamical Approximations of the Boltzmann Equation for rarefied gases on a Cluster of Computers, J. of Computational Methods in Science and Engineering 4, 33-41, 2004.
- J.A. Carrillo, T. Goudon, A numerical study on large-time asymptotics of the Lifshitz-Slyozov system, Journal of Scientific Computing 20, 69-113, 2004.
- J. M. Mantas-Ruiz, J. Ortega-Lopera, J. A. Carrillo, Component-based derivation of a parallel stiff ODE solver implemented in a cluster of computers, International Journal of Paralell Programing, 30, 99-148, 2002.
Other Nonlinear PDEs: Analysis
- J. A. Carrillo, K. Grunert, H. Holden, A Lipschitz metric for the Camassa-Holm equation, Forum of Mathematics, Sigma 8, e27, 2020.
- J. A. Carrillo, K. Grunert, H. Holden, A Lipschitz metric for the Hunter-Saxton equation, Comm. PDE 44, 309-334, 2019.
- J. A. Carrillo, L. Ni, Sharp logarithmic Sobolev inequalities on gradient solitons and applications, Communications in Analysis and Geometry 17, 721-753, 2009.
- M. Bostan, J. A. Carrillo, Global solutions for the one dimensional Water Bag model, Comm. Math. Sci 7, 129-141, 2009.
- J.A. Carrillo, M. Di Francesco, C. Lattanzio, Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws, Bollettino UMI 10-B, 277-292, 2007.
- J.A. Carrillo, L.C.F. Ferreira, Asymptotic Behavior for the Sub-critical Dissipative Quasi-Geostrophic Equations, Nonlinearity 21, 1001-1018, 2008.
- J.A. Carrillo, L.C.F. Ferreira, Convergence towards Self-similar Asymptotic Behavior for the Dissipative Quasi-Geostrophic Equations, Banach Center Publ. 74, 95-115, 2006.
- J.A. Carrillo, M. Di Francesco, C. Lattanzio, Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws, J. Diff. Equations 231, 425-458, 2006.
- J.A. Carrillo, L.C.F. Ferreira, Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equations, Monatshefte für Mathematik 151, 111-142, 2007.
- J. A. Carrillo, J. Soler, On the evolution of an angle in a vortex patch, J. Nonlinear Sci., 10, 23-47, 2000.
- J. A. Carrillo, J. Soler, On the evolution of a singular vortex patch in a two-dimensional incompressible fluid flow, Computer Physics Communications, 121-122, 244-250, 1999.
- J.A. Carrillo, On a non-local elliptic equation with decreasing nonlinearity arising in plasma physics, Nonlinear Analysis 32, 97-115, 1998.